Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Compressive sensing based differential channel feedback for massive MIMO (1507.04618v1)

Published 16 Jul 2015 in cs.IT and math.IT

Abstract: Massive multiple-input multiple-output (MIMO) is becoming a key technology for future 5G wireless communications. Channel feedback for massive MIMO is challenging due to the substantially increased dimension of MIMO channel matrix. In this letter, we propose a compressive sensing (CS) based differential channel feedback scheme to reduce the feedback overhead. Specifically, the temporal correlation of time-varying channels is exploited to generate the differential channel impulse response (CIR) between two CIRs in neighboring time slots, which enjoys a much stronger sparsity than the original sparse CIRs. Thus, the base station can recover the differential CIR from the highly compressed differential CIR under the framework of CS theory. Simulations show that the proposed scheme reduces the feedback overhead by about 20\% compared with the direct CS-based scheme.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.