A bi-criteria approximation algorithm for $k$ Means (1507.04227v2)
Abstract: We consider the classical $k$-means clustering problem in the setting bi-criteria approximation, in which an algoithm is allowed to output $\beta k > k$ clusters, and must produce a clustering with cost at most $\alpha$ times the to the cost of the optimal set of $k$ clusters. We argue that this approach is natural in many settings, for which the exact number of clusters is a priori unknown, or unimportant up to a constant factor. We give new bi-criteria approximation algorithms, based on linear programming and local search, respectively, which attain a guarantee $\alpha(\beta)$ depending on the number $\beta k$ of clusters that may be opened. Our gurantee $\alpha(\beta)$ is always at most $9 + \epsilon$ and improves rapidly with $\beta$ (for example: $\alpha(2)<2.59$, and $\alpha(3) < 1.4$). Moreover, our algorithms have only polynomial dependence on the dimension of the input data, and so are applicable in high-dimensional settings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.