Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Projected Wirtinger Gradient Descent for Low-Rank Hankel Matrix Completion in Spectral Compressed Sensing (1507.03707v1)

Published 14 Jul 2015 in cs.IT, cs.LG, math.IT, and math.OC

Abstract: This paper considers reconstructing a spectrally sparse signal from a small number of randomly observed time-domain samples. The signal of interest is a linear combination of complex sinusoids at $R$ distinct frequencies. The frequencies can assume any continuous values in the normalized frequency domain $[0,1)$. After converting the spectrally sparse signal recovery into a low rank structured matrix completion problem, we propose an efficient feasible point approach, named projected Wirtinger gradient descent (PWGD) algorithm, to efficiently solve this structured matrix completion problem. We further accelerate our proposed algorithm by a scheme inspired by FISTA. We give the convergence analysis of our proposed algorithms. Extensive numerical experiments are provided to illustrate the efficiency of our proposed algorithm. Different from earlier approaches, our algorithm can solve problems of very large dimensions very efficiently.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.