Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The condensation phase transition in the regular $k$-SAT model (1507.03512v3)

Published 13 Jul 2015 in math.PR, cs.DM, and math.CO

Abstract: Much of the recent work on random constraint satisfaction problems has been inspired by ingenious but non-rigorous approaches from physics. The physics predictions typically come in the form of distributional fixed point problems that are intended to mimic Belief Propagation, a message passing algorithm, applied to the random CSP. In this paper we propose a novel method for harnessing Belief Propagation directly to obtain a rigorous proof of such a prediction, namely the existence and location of a condensation phase transition in the random regular $k$-SAT model.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.