Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Managing Hybrid Main Memories with a Page-Utility Driven Performance Model (1507.03303v1)

Published 13 Jul 2015 in cs.AR

Abstract: Hybrid memory systems comprised of dynamic random access memory (DRAM) and non-volatile memory (NVM) have been proposed to exploit both the capacity advantage of NVM and the latency and dynamic energy advantages of DRAM. An important problem for such systems is how to place data between DRAM and NVM to improve system performance. In this paper, we devise the first mechanism, called UBM (page Utility Based hybrid Memory management), that systematically estimates the system performance benefit of placing a page in DRAM versus NVM and uses this estimate to guide data placement. UBM's estimation method consists of two major components. First, it estimates how much an application's stall time can be reduced if the accessed page is placed in DRAM. To do this, UBM comprehensively considers access frequency, row buffer locality, and memory level parallelism (MLP) to estimate the application's stall time reduction. Second, UBM estimates how much each application's stall time reduction contributes to overall system performance. Based on this estimation method, UBM can determine and place the most critical data in DRAM to directly optimize system performance. Experimental results show that UBM improves system performance by 14% on average (and up to 39%) compared to the best of three state-of-the-art mechanisms for a large number of data-intensive workloads from the SPEC CPU2006 and Yahoo Cloud Serving Benchmark (YCSB) suites.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube