Papers
Topics
Authors
Recent
2000 character limit reached

A Review of Nonnegative Matrix Factorization Methods for Clustering (1507.03194v2)

Published 12 Jul 2015 in stat.ML, cs.LG, and cs.NA

Abstract: Nonnegative Matrix Factorization (NMF) was first introduced as a low-rank matrix approximation technique, and has enjoyed a wide area of applications. Although NMF does not seem related to the clustering problem at first, it was shown that they are closely linked. In this report, we provide a gentle introduction to clustering and NMF before reviewing the theoretical relationship between them. We then explore several NMF variants, namely Sparse NMF, Projective NMF, Nonnegative Spectral Clustering and Cluster-NMF, along with their clustering interpretations.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 5 likes about this paper.