Papers
Topics
Authors
Recent
2000 character limit reached

Understanding Intra-Class Knowledge Inside CNN (1507.02379v2)

Published 9 Jul 2015 in cs.CV

Abstract: Convolutional Neural Network (CNN) has been successful in image recognition tasks, and recent works shed lights on how CNN separates different classes with the learned inter-class knowledge through visualization. In this work, we instead visualize the intra-class knowledge inside CNN to better understand how an object class is represented in the fully-connected layers. To invert the intra-class knowledge into more interpretable images, we propose a non-parametric patch prior upon previous CNN visualization models. With it, we show how different "styles" of templates for an object class are organized by CNN in terms of location and content, and represented in a hierarchical and ensemble way. Moreover, such intra-class knowledge can be used in many interesting applications, e.g. style-based image retrieval and style-based object completion.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.