Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multisection in the Stochastic Block Model using Semidefinite Programming (1507.02323v1)

Published 8 Jul 2015 in cs.DS, math.PR, and stat.ML

Abstract: We consider the problem of identifying underlying community-like structures in graphs. Towards this end we study the Stochastic Block Model (SBM) on $k$-clusters: a random model on $n=km$ vertices, partitioned in $k$ equal sized clusters, with edges sampled independently across clusters with probability $q$ and within clusters with probability $p$, $p>q$. The goal is to recover the initial "hidden" partition of $[n]$. We study semidefinite programming (SDP) based algorithms in this context. In the regime $p = \frac{\alpha \log(m)}{m}$ and $q = \frac{\beta \log(m)}{m}$ we show that a certain natural SDP based algorithm solves the problem of {\em exact recovery} in the $k$-community SBM, with high probability, whenever $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{1}$, as long as $k=o(\log n)$. This threshold is known to be the information theoretically optimal. We also study the case when $k=\theta(\log(n))$. In this case however we achieve recovery guarantees that no longer match the optimal condition $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{1}$, thus leaving achieving optimality for this range an open question.

Citations (58)

Summary

We haven't generated a summary for this paper yet.