Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multisection in the Stochastic Block Model using Semidefinite Programming (1507.02323v1)

Published 8 Jul 2015 in cs.DS, math.PR, and stat.ML

Abstract: We consider the problem of identifying underlying community-like structures in graphs. Towards this end we study the Stochastic Block Model (SBM) on $k$-clusters: a random model on $n=km$ vertices, partitioned in $k$ equal sized clusters, with edges sampled independently across clusters with probability $q$ and within clusters with probability $p$, $p>q$. The goal is to recover the initial "hidden" partition of $[n]$. We study semidefinite programming (SDP) based algorithms in this context. In the regime $p = \frac{\alpha \log(m)}{m}$ and $q = \frac{\beta \log(m)}{m}$ we show that a certain natural SDP based algorithm solves the problem of {\em exact recovery} in the $k$-community SBM, with high probability, whenever $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{1}$, as long as $k=o(\log n)$. This threshold is known to be the information theoretically optimal. We also study the case when $k=\theta(\log(n))$. In this case however we achieve recovery guarantees that no longer match the optimal condition $\sqrt{\alpha} - \sqrt{\beta} > \sqrt{1}$, thus leaving achieving optimality for this range an open question.

Citations (58)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.