Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Learning Deep Neural Network Policies with Continuous Memory States (1507.01273v2)

Published 5 Jul 2015 in cs.LG and cs.RO

Abstract: Policy learning for partially observed control tasks requires policies that can remember salient information from past observations. In this paper, we present a method for learning policies with internal memory for high-dimensional, continuous systems, such as robotic manipulators. Our approach consists of augmenting the state and action space of the system with continuous-valued memory states that the policy can read from and write to. Learning general-purpose policies with this type of memory representation directly is difficult, because the policy must automatically figure out the most salient information to memorize at each time step. We show that, by decomposing this policy search problem into a trajectory optimization phase and a supervised learning phase through a method called guided policy search, we can acquire policies with effective memorization and recall strategies. Intuitively, the trajectory optimization phase chooses the values of the memory states that will make it easier for the policy to produce the right action in future states, while the supervised learning phase encourages the policy to use memorization actions to produce those memory states. We evaluate our method on tasks involving continuous control in manipulation and navigation settings, and show that our method can learn complex policies that successfully complete a range of tasks that require memory.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.