Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Falls as anomalies? An experimental evaluation using smartphone accelerometer data (1507.01206v2)

Published 5 Jul 2015 in cs.SY

Abstract: Life expectancy keeps growing and, among elderly people, accidental falls occur frequently. A system able to promptly detect falls would help in reducing the injuries that a fall could cause. Such a system should meet the needs of the people to which is designed, so that it is actually used. In particular, the system should be minimally invasive and inexpensive. Thanks to the fact that most of the smartphones embed accelerometers and powerful processing unit, they are good candidates both as data acquisition devices and as platforms to host fall detection systems. For this reason, in the last years several fall detection methods have been experimented on smartphone accelerometer data. Most of them have been tuned with simulated falls because, to date, datasets of real-world falls are not available. This article evaluates the effectiveness of methods that detect falls as anomalies. To this end, we compared traditional approaches with anomaly detectors. In particular, we experienced the kNN and the SVM methods using both the one-class and two-classes configurations. The comparison involved three different collections of accelerometer data, and four different data representations. Empirical results demonstrated that, in most of the cases, falls are not required to design an effective fall detector.

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.