Papers
Topics
Authors
Recent
Search
2000 character limit reached

Correlated Multiarmed Bandit Problem: Bayesian Algorithms and Regret Analysis

Published 5 Jul 2015 in math.OC, cs.LG, and stat.ML | (1507.01160v2)

Abstract: We consider the correlated multiarmed bandit (MAB) problem in which the rewards associated with each arm are modeled by a multivariate Gaussian random variable, and we investigate the influence of the assumptions in the Bayesian prior on the performance of the upper credible limit (UCL) algorithm and a new correlated UCL algorithm. We rigorously characterize the influence of accuracy, confidence, and correlation scale in the prior on the decision-making performance of the algorithms. Our results show how priors and correlation structure can be leveraged to improve performance.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.