Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Peaceman-Rachford splitting for a class of nonconvex optimization problems (1507.00887v3)

Published 3 Jul 2015 in math.OC, cs.NA, and math.NA

Abstract: We study the applicability of the Peaceman-Rachford (PR) splitting method for solving nonconvex optimization problems. When applied to minimizing the sum of a strongly convex Lipschitz differentiable function and a proper closed function, we show that if the strongly convex function has a large enough strong convexity modulus and the step-size parameter is chosen below a threshold that is computable, then any cluster point of the sequence generated, if exists, will give a stationary point of the optimization problem. We also give sufficient conditions guaranteeing boundedness of the sequence generated. We then discuss one way to split the objective so that the proposed method can be suitably applied to solving optimization problems with a coercive objective that is the sum of a (not necessarily strongly) convex Lipschitz differentiable function and a proper closed function; this setting covers a large class of nonconvex feasibility problems and constrained least squares problems. Finally, we illustrate the proposed algorithm numerically.

Citations (30)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube