Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Network growth with preferential attachment and without "rich get richer" mechanism (1507.00610v1)

Published 2 Jul 2015 in physics.soc-ph, cond-mat.stat-mech, and cs.SI

Abstract: We propose a simple preferential attachment model of growing network using the complementary probability of Barab\'asi-Albert (BA) model, i.e., $\Pi(k_i) \propto 1-\frac{k_i}{\sum_j k_j}$. In this network, new nodes are preferentially attached to not well connected nodes. Numerical simulations, in perfect agreement with the master equation solution, give an exponential degree distribution. This suggests that the power law degree distribution is a consequence of preferential attachment probability together with "rich get richer" phenomena. We also calculate the average degree of a target node at time t $(<k_s(t)>)$ and its fluctuations, to have a better view of the microscopic evolution of the network, and we also compare the results with BA model.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)