Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Subspace Estimation and Decomposition for Large Millimeter-Wave MIMO systems (1507.00287v2)

Published 1 Jul 2015 in cs.IT and math.IT

Abstract: Channel estimation and precoding in hybrid analog-digital millimeter-wave (mmWave) MIMO systems is a fundamental problem that has yet to be addressed, before any of the promised gains can be harnessed. For that matter, we propose a method (based on the well-known Arnoldi iteration) exploiting channel reciprocity in TDD systems and the sparsity of the channel's eigenmodes, to estimate the right (resp. left) singular subspaces of the channel, at the BS (resp. MS). We first describe the algorithm in the context of conventional MIMO systems, and derive bounds on the estimation error in the presence of distortions at both BS and MS. We later identify obstacles that hinder the application of such an algorithm to the hybrid analog-digital architecture, and address them individually. In view of fulfilling the constraints imposed by the hybrid analog-digital architecture, we further propose an iterative algorithm for subspace decomposition, whereby the above estimated subspaces, are approximated by a cascade of analog and digital precoder / combiner. Finally, we evaluate the performance of our scheme against the perfect CSI, fully digital case (i.e., an equivalent conventional MIMO system), and conclude that similar performance can be achieved, especially at medium-to-high SNR (where the performance gap is less than 5%), however, with a drastically lower number of RF chains (4 to 8 times less).

Citations (132)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube