Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Information Extraction from Larger Multi-layer Social Networks (1507.00087v1)

Published 1 Jul 2015 in cs.SI and physics.soc-ph

Abstract: Social networks often encode community structure using multiple distinct types of links between nodes. In this paper we introduce a novel method to extract information from such multi-layer networks, where each type of link forms its own layer. Using the concept of Pareto optimality, community detection in this multi-layer setting is formulated as a multiple criterion optimization problem. We propose an algorithm for finding an approximate Pareto frontier containing a family of solutions. The power of this approach is demonstrated on a Twitter dataset, where the nodes are hashtags and the layers correspond to (1) behavioral edges connecting pairs of hashtags whose temporal profiles are similar and (2) relational edges connecting pairs of hashtags that appear in the same tweets.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.