Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test of two hypotheses explaining the size of populations in a system of cities (1506.08535v1)

Published 29 Jun 2015 in physics.soc-ph, cs.SI, and stat.AP

Abstract: Two classical hypotheses are examined about the population growth in a system of cities: Hypothesis 1 pertains to Gibrat's and Zipf's theory which states that the city growth-decay process is size independent; Hypothesis 2 pertains to the so called Yule process which states that the growth of populations in cities happens when (i) the distribution of the city population initial size obeys a log-normal function, (ii) the growth of the settlements follows a stochastic process. The basis for the test is some official data on Bulgarian cities at various times. This system was chosen because (i) Bulgaria is a country for which one does not expect biased theoretical conditions; (ii) the city populations were determined rather precisely. The present results show that: (i) the population size growth of the Bulgarian cities is size dependent, whence Hypothesis 1 is not confirmed for Bulgaria; (ii) the population size growth of Bulgarian cities can be described by a double Pareto log-normal distribution, whence Hypothesis 2 is valid for the Bulgarian city system. It is expected that this fine study brings some information and light on other, usually considered to be more pertinent, city systems in various countries.

Citations (26)

Summary

We haven't generated a summary for this paper yet.