Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustness Analysis of Preconditioned Successive Projection Algorithm for General Form of Separable NMF Problem (1506.08387v2)

Published 28 Jun 2015 in stat.ML and math.OC

Abstract: The successive projection algorithm (SPA) has been known to work well for separable nonnegative matrix factorization (NMF) problems arising in applications, such as topic extraction from documents and endmember detection in hyperspectral images. One of the reasons is in that the algorithm is robust to noise. Gillis and Vavasis showed in [SIAM J. Optim., 25(1), pp. 677-698, 2015] that a preconditioner can further enhance its noise robustness. The proof rested on the condition that the dimension $d$ and factorization rank $r$ in the separable NMF problem coincide with each other. However, it may be unrealistic to expect that the condition holds in separable NMF problems appearing in actual applications; in such problems, $d$ is usually greater than $r$. This paper shows, without the condition $d=r$, that the preconditioned SPA is robust to noise.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Tomohiko Mizutani (8 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.