Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparsified Cholesky Solvers for SDD linear systems (1506.08204v2)

Published 26 Jun 2015 in cs.DS

Abstract: We show that Laplacian and symmetric diagonally dominant (SDD) matrices can be well approximated by linear-sized sparse Cholesky factorizations. We show that these matrices have constant-factor approximations of the form $L L{T}$, where $L$ is a lower-triangular matrix with a number of nonzero entries linear in its dimension. Furthermore linear systems in $L$ and $L{T}$ can be solved in $O (n)$ work and $O(\log{n}\log2\log{n})$ depth, where $n$ is the dimension of the matrix. We present nearly linear time algorithms that construct solvers that are almost this efficient. In doing so, we give the first nearly-linear work routine for constructing spectral vertex sparsifiers---that is, spectral approximations of Schur complements of Laplacian matrices.

Citations (31)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.