Sparsified Cholesky Solvers for SDD linear systems (1506.08204v2)
Abstract: We show that Laplacian and symmetric diagonally dominant (SDD) matrices can be well approximated by linear-sized sparse Cholesky factorizations. We show that these matrices have constant-factor approximations of the form $L L{T}$, where $L$ is a lower-triangular matrix with a number of nonzero entries linear in its dimension. Furthermore linear systems in $L$ and $L{T}$ can be solved in $O (n)$ work and $O(\log{n}\log2\log{n})$ depth, where $n$ is the dimension of the matrix. We present nearly linear time algorithms that construct solvers that are almost this efficient. In doing so, we give the first nearly-linear work routine for constructing spectral vertex sparsifiers---that is, spectral approximations of Schur complements of Laplacian matrices.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.