The local convexity of solving systems of quadratic equations (1506.07868v5)
Abstract: This paper considers the recovery of a rank $r$ positive semidefinite matrix $X XT\in\mathbb{R}{n\times n}$ from $m$ scalar measurements of the form $y_i := a_iT X XT a_i$ (i.e., quadratic measurements of $X$). Such problems arise in a variety of applications, including covariance sketching of high-dimensional data streams, quadratic regression, quantum state tomography, among others. A natural approach to this problem is to minimize the loss function $f(U) = \sum_i (y_i - a_iTUUTa_i)2$ which has an entire manifold of solutions given by ${XO}_{O\in\mathcal{O}_r}$ where $\mathcal{O}_r$ is the orthogonal group of $r\times r$ orthogonal matrices; this is {\it non-convex} in the $n\times r$ matrix $U$, but methods like gradient descent are simple and easy to implement (as compared to semidefinite relaxation approaches). In this paper we show that once we have $m \geq C nr \log2(n)$ samples from isotropic gaussian $a_i$, with high probability {\em (a)} this function admits a dimension-independent region of {\em local strong convexity} on lines perpendicular to the solution manifold, and {\em (b)} with an additional polynomial factor of $r$ samples, a simple spectral initialization will land within the region of convexity with high probability. Together, this implies that gradient descent with initialization (but no re-sampling) will converge linearly to the correct $X$, up to an orthogonal transformation. We believe that this general technique (local convexity reachable by spectral initialization) should prove applicable to a broader class of nonconvex optimization problems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.