Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

An Enhanced Apriori Algorithm for Discovering Frequent Patterns with Optimal Number of Scans (1506.07087v1)

Published 23 Jun 2015 in cs.DB

Abstract: Data mining is wide spreading its applications in several areas. There are different tasks in mining which provides solutions for wide variety of problems in order to discover knowledge. Among those tasks association mining plays a pivotal role for identifying frequent patterns. Among the available association mining algorithms Apriori algorithm is one of the most prevalent and dominant algorithm which is used to discover frequent patterns. This algorithm is used to discover frequent patterns from small to large databases. This paper points toward the inadequacy of the tangible Apriori algorithm of wasting time for scanning the whole transactional database for discovering association rules and proposes an enhancement on Apriori algorithm to overcome this problem. This enhancement is obtained by dropping the amount of time used in scanning the transactional database by just limiting the number of transactions while calculating the frequency of an item or item-pairs. This improved version of Apriori algorithm optimizes the time used for scanning the whole transactional database.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube