Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bounds for the Clique Cover Width of Factors of the Apex Graph of the Planar Grid (1506.06813v4)

Published 22 Jun 2015 in cs.DM and math.CO

Abstract: The {\it clique cover width} of $G$, denoted by $ccw(G)$, is the minimum value of the bandwidth of all graphs that are obtained by contracting the cliques in a clique cover of $G$ into a single vertex. For $i=1,2,...,d,$ let $G_i$ be a graph with $V(G_i)=V$, and let $G$ be a graph with $V(G)=V$ and $E(G)=\cap_{i=1}d(G_i)$, then we write $G=\cap_{i=1}dG_i$ and call each $G_i,i=1,2,...,d$ a factor of $G$. We are interested in the case where $G_1$ is chordal, and $ccw(G_i),i=2,3...,d$ for each factor $G_i$ is "small". Here we show a negative result. Specifically, let ${\hat G}(k,n)$ be the graph obtained by joining a set of $k$ apex vertices of degree $n2$ to all vertices of an $n\times n$ grid, and then adding some possible edges among these $k$ vertices. We prove that if ${\hat G}(k,n)=\cap_{i=1}dG_i$, with $G_1$ being chordal, then, $max_{2\le i\le d}{ccw(G_i)}\ge {n{1\over d-1}\over 2.{(2c)}{1\over {d-1}}}$, where $c$ is a constant. Furthermore, for $d=2$, we construct a chordal graph $G_1$ and a graph $G_2$ with $ccw(G_2)\le {n\over 2}+k$ so that ${\hat G}(k,n)=G_1\cap G_2$. Finally, let ${\hat G}$ be the clique sum graph of ${\hat G}(k_i, n_i), i=1,2,...t$, where the underlying grid is $n_i\times n_i$ and the sum is taken at apex vertices. Then, we show ${\hat G}=G_1\cap G_2$, where, $G_1$ is chordal and $ccw(G_2)\le \sum_{i=1}t(n_i+k_i)$. The implications and applications of the results are discussed, including addressing a recent question of David Wood.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)