Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Filling the Complexity Gaps for Colouring Planar and Bounded Degree Graphs (1506.06564v5)

Published 22 Jun 2015 in cs.DS, cs.CC, cs.DM, and math.CO

Abstract: A colouring of a graph $G=(V,E)$ is a function $c: V\rightarrow{1,2,\ldots }$ such that $c(u)\neq c(v)$ for every $uv\in E$. A $k$-regular list assignment of $G$ is a function $L$ with domain $V$ such that for every $u\in V$, $L(u)$ is a subset of ${1, 2, \dots}$ of size $k$. A colouring $c$ of $G$ respects a $k$-regular list assignment $L$ of $G$ if $c(u)\in L(u)$ for every $u\in V$. A graph $G$ is $k$-choosable if for every $k$-regular list assignment $L$ of $G$, there exists a colouring of $G$ that respects $L$. We may also ask if for a given $k$-regular list assignment $L$ of a given graph $G$, there exists a colouring of $G$ that respects $L$. This yields the $k$-Regular List Colouring problem. For $k\in {3,4}$ we determine a family of classes ${\cal G}$ of planar graphs, such that either $k$-Regular List Colouring is NP-complete for instances $(G,L)$ with $G\in {\cal G}$, or every $G\in {\cal G}$ is $k$-choosable. By using known examples of non-$3$-choosable and non-$4$-choosable graphs, this enables us to classify the complexity of $k$-Regular List Colouring restricted to planar graphs, planar bipartite graphs, planar triangle-free graphs and to planar graphs with no $4$-cycles and no $5$-cycles. We also classify the complexity of $k$-Regular List Colouring and a number of related colouring problems for graphs with bounded maximum degree.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.