Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Restricted isometry property of random subdictionaries (1506.06345v1)

Published 21 Jun 2015 in cs.IT and math.IT

Abstract: We study statistical restricted isometry, a property closely related to sparse signal recovery, of deterministic sensing matrices of size $m \times N$. A matrix is said to have a statistical restricted isometry property (StRIP) of order $k$ if most submatrices with $k$ columns define a near-isometric map of ${\mathbb R}k$ into ${\mathbb R}m$. As our main result, we establish sufficient conditions for the StRIP property of a matrix in terms of the mutual coherence and mean square coherence. We show that for many existing deterministic families of sampling matrices, $m=O(k)$ rows suffice for $k$-StRIP, which is an improvement over the known estimates of either $m = \Theta(k \log N)$ or $m = \Theta(k\log k)$. We also give examples of matrix families that are shown to have the StRIP property using our sufficient conditions.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.