Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Filtrated Algebraic Subspace Clustering (1506.06289v5)

Published 20 Jun 2015 in cs.CV

Abstract: Subspace clustering is the problem of clustering data that lie close to a union of linear subspaces. In the abstract form of the problem, where no noise or other corruptions are present, the data are assumed to lie in general position inside the algebraic variety of a union of subspaces, and the objective is to decompose the variety into its constituent subspaces. Prior algebraic-geometric approaches to this problem require the subspaces to be of equal dimension, or the number of subspaces to be known. Subspaces of arbitrary dimensions can still be recovered in closed form, in terms of all homogeneous polynomials of degree $m$ that vanish on their union, when an upper bound m on the number of the subspaces is given. In this paper, we propose an alternative, provably correct, algorithm for addressing a union of at most $m$ arbitrary-dimensional subspaces, based on the idea of descending filtrations of subspace arrangements. Our algorithm uses the gradient of a vanishing polynomial at a point in the variety to find a hyperplane containing the subspace S passing through that point. By intersecting the variety with this hyperplane, we obtain a subvariety that contains S, and recursively applying the procedure until no non-trivial vanishing polynomial exists, our algorithm eventually identifies S. By repeating this procedure for other points, our algorithm eventually identifies all the subspaces by returning a basis for their orthogonal complement. Finally, we develop a variant of the abstract algorithm, suitable for computations with noisy data. We show by experiments on synthetic and real data that the proposed algorithm outperforms state-of-the-art methods on several occasions, thus demonstrating the merit of the idea of filtrations.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.