Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Nivat Theorem for Weighted Timed Automata and Weighted Relative Distance Logic

Published 19 Jun 2015 in cs.FL | (1506.06038v1)

Abstract: Weighted timed automata (WTA) model quantitative aspects of real-time systems like continuous consumption of memory, power or financial resources. They accept quantitative timed languages where every timed word is mapped to a value, e.g., a real number. In this paper, we prove a Nivat theorem for WTA which states that recognizable quantitative timed languages are exactly those which can be obtained from recognizable boolean timed languages with the help of several simple operations. We also introduce a weighted extension of relative distance logic developed by Wilke, and we show that our weighted relative distance logic and WTA are equally expressive. The proof of this result can be derived from our Nivat theorem and Wilke's theorem for relative distance logic. Since the proof of our Nivat theorem is constructive, the translation process from logic to automata and vice versa is also constructive. This leads to decidability results for weighted relative distance logic.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.