Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fluid Model Checking of Timed Properties (1506.05909v1)

Published 19 Jun 2015 in cs.FL

Abstract: We address the problem of verifying timed properties of Markovian models of large populations of interacting agents, modelled as finite state automata. In particular, we focus on time-bounded properties of (random) individual agents specified by Deterministic Timed Automata (DTA) endowed with a single clock. Exploiting ideas from fluid approximation, we estimate the satisfaction probability of the DTA properties by reducing it to the computation of the transient probability of a subclass of Time-Inhomogeneous Markov Renewal Processes with exponentially and deterministically-timed transitions, and a small state space. For this subclass of models, we show how to derive a set of Delay Differential Equations (DDE), whose numerical solution provides a fast and accurate estimate of the satisfaction probability. In the paper, we also prove the asymptotic convergence of the approach, and exemplify the method on a simple epidemic spreading model. Finally, we also show how to construct a system of DDEs to efficiently approximate the average number of agents that satisfy the DTA specification.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.