Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Information-based inference for singular models and finite sample sizes: A frequentist information criterion (1506.05855v5)

Published 19 Jun 2015 in stat.ML, cs.LG, and physics.data-an

Abstract: In the information-based paradigm of inference, model selection is performed by selecting the candidate model with the best estimated predictive performance. The success of this approach depends on the accuracy of the estimate of the predictive complexity. In the large-sample-size limit of a regular model, the predictive performance is well estimated by the Akaike Information Criterion (AIC). However, this approximation can either significantly under or over-estimating the complexity in a wide range of important applications where models are either non-regular or finite-sample-size corrections are significant. We introduce an improved approximation for the complexity that is used to define a new information criterion: the Frequentist Information Criterion (QIC). QIC extends the applicability of information-based inference to the finite-sample-size regime of regular models and to singular models. We demonstrate the power and the comparative advantage of QIC in a number of example analyses.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.