Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Simultaneous Orthogonal Matching Pursuit With Noise Stabilization: Theoretical Analysis (1506.05324v1)

Published 17 Jun 2015 in cs.IT and math.IT

Abstract: This paper studies the joint support recovery of similar sparse vectors on the basis of a limited number of noisy linear measurements, i.e., in a multiple measurement vector (MMV) model. The additive noise signals on each measurement vector are assumed to be Gaussian and to exhibit different variances. The simultaneous orthogonal matching pursuit (SOMP) algorithm is generalized to weight the impact of each measurement vector on the choice of the atoms to be picked according to their noise levels. The new algorithm is referred to as SOMP-NS where NS stands for noise stabilization. To begin with, a theoretical framework to analyze the performance of the proposed algorithm is developed. This framework is then used to build conservative lower bounds on the probability of partial or full joint support recovery. Numerical simulations show that the proposed algorithm outperforms SOMP and that the theoretical lower bound provides a great insight into how SOMP-NS behaves when the weighting strategy is modified.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.