Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Simultaneous Orthogonal Matching Pursuit With Noise Stabilization: Theoretical Analysis (1506.05324v1)

Published 17 Jun 2015 in cs.IT and math.IT

Abstract: This paper studies the joint support recovery of similar sparse vectors on the basis of a limited number of noisy linear measurements, i.e., in a multiple measurement vector (MMV) model. The additive noise signals on each measurement vector are assumed to be Gaussian and to exhibit different variances. The simultaneous orthogonal matching pursuit (SOMP) algorithm is generalized to weight the impact of each measurement vector on the choice of the atoms to be picked according to their noise levels. The new algorithm is referred to as SOMP-NS where NS stands for noise stabilization. To begin with, a theoretical framework to analyze the performance of the proposed algorithm is developed. This framework is then used to build conservative lower bounds on the probability of partial or full joint support recovery. Numerical simulations show that the proposed algorithm outperforms SOMP and that the theoretical lower bound provides a great insight into how SOMP-NS behaves when the weighting strategy is modified.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.