Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Estimation of Structured Covariance Matrix for Heavy-Tailed Elliptical Distributions (1506.05215v1)

Published 17 Jun 2015 in stat.AP and stat.ML

Abstract: This paper considers the problem of robustly estimating a structured covariance matrix with an elliptical underlying distribution with known mean. In applications where the covariance matrix naturally possesses a certain structure, taking the prior structure information into account in the estimation procedure is beneficial to improve the estimation accuracy. We propose incorporating the prior structure information into Tyler's M-estimator and formulate the problem as minimizing the cost function of Tyler's estimator under the prior structural constraint. First, the estimation under a general convex structural constraint is introduced with an efficient algorithm for finding the estimator derived based on the majorization minimization (MM) algorithm framework. Then, the algorithm is tailored to several special structures that enjoy a wide range of applications in signal processing related fields, namely, sum of rank-one matrices, Toeplitz, and banded Toeplitz structure. In addition, two types of non-convex structures, i.e., the Kronecker structure and the spiked covariance structure, are also discussed, where it is shown that simple algorithms can be derived under the guidelines of MM. Numerical results show that the proposed estimator achieves a smaller estimation error than the benchmark estimators at a lower computational cost.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.