Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parsing Natural Language Sentences by Semi-supervised Methods (1506.04897v1)

Published 16 Jun 2015 in cs.CL

Abstract: We present our work on semi-supervised parsing of natural language sentences, focusing on multi-source crosslingual transfer of delexicalized dependency parsers. We first evaluate the influence of treebank annotation styles on parsing performance, focusing on adposition attachment style. Then, we present KLcpos3, an empirical language similarity measure, designed and tuned for source parser weighting in multi-source delexicalized parser transfer. And finally, we introduce a novel resource combination method, based on interpolation of trained parser models.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)