Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Tree-structured composition in neural networks without tree-structured architectures (1506.04834v3)

Published 16 Jun 2015 in cs.CL and cs.LG

Abstract: Tree-structured neural networks encode a particular tree geometry for a sentence in the network design. However, these models have at best only slightly outperformed simpler sequence-based models. We hypothesize that neural sequence models like LSTMs are in fact able to discover and implicitly use recursive compositional structure, at least for tasks with clear cues to that structure in the data. We demonstrate this possibility using an artificial data task for which recursive compositional structure is crucial, and find an LSTM-based sequence model can indeed learn to exploit the underlying tree structure. However, its performance consistently lags behind that of tree models, even on large training sets, suggesting that tree-structured models are more effective at exploiting recursive structure.

Citations (74)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.