Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Empirical Coordination with Channel Feedback and Strictly Causal or Causal Encoding (1506.04814v1)

Published 16 Jun 2015 in cs.IT and math.IT

Abstract: In multi-terminal networks, feedback increases the capacity region and helps communication devices to coordinate. In this article, we deepen the relationship between coordination and feedback by considering a point-to-point scenario with an information source and a noisy channel. Empirical coordination is achievable if the encoder and the decoder can implement sequences of symbols that are jointly typical for a target probability distribution. We investigate the impact of feedback when the encoder has strictly causal or causal observation of the source symbols. For both cases, we characterize the optimal information constraints and we show that feedback improves coordination possibilities. Surprisingly, feedback also reduces the number of auxiliary random variables and simplifies the information constraints. For empirical coordination with strictly causal encoding and feedback, the information constraint does not involve auxiliary random variable anymore.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.