Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Latent Regression Bayesian Network for Data Representation (1506.04720v1)

Published 15 Jun 2015 in cs.LG

Abstract: Deep directed generative models have attracted much attention recently due to their expressive representation power and the ability of ancestral sampling. One major difficulty of learning directed models with many latent variables is the intractable inference. To address this problem, most existing algorithms make assumptions to render the latent variables independent of each other, either by designing specific priors, or by approximating the true posterior using a factorized distribution. We believe the correlations among latent variables are crucial for faithful data representation. Driven by this idea, we propose an inference method based on the conditional pseudo-likelihood that preserves the dependencies among the latent variables. For learning, we propose to employ the hard Expectation Maximization (EM) algorithm, which avoids the intractability of the traditional EM by max-out instead of sum-out to compute the data likelihood. Qualitative and quantitative evaluations of our model against state of the art deep models on benchmark datasets demonstrate the effectiveness of the proposed algorithm in data representation and reconstruction.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.