Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Re-scale AdaBoost for Attack Detection in Collaborative Filtering Recommender Systems (1506.04584v1)

Published 15 Jun 2015 in cs.IR, cs.CR, and cs.LG

Abstract: Collaborative filtering recommender systems (CFRSs) are the key components of successful e-commerce systems. Actually, CFRSs are highly vulnerable to attacks since its openness. However, since attack size is far smaller than that of genuine users, conventional supervised learning based detection methods could be too "dull" to handle such imbalanced classification. In this paper, we improve detection performance from following two aspects. First, we extract well-designed features from user profiles based on the statistical properties of the diverse attack models, making hard classification task becomes easier to perform. Then, refer to the general idea of re-scale Boosting (RBoosting) and AdaBoost, we apply a variant of AdaBoost, called the re-scale AdaBoost (RAdaBoost) as our detection method based on extracted features. RAdaBoost is comparable to the optimal Boosting-type algorithm and can effectively improve the performance in some hard scenarios. Finally, a series of experiments on the MovieLens-100K data set are conducted to demonstrate the outperformance of RAdaBoost comparing with some classical techniques such as SVM, kNN and AdaBoost.

Citations (80)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.