Papers
Topics
Authors
Recent
2000 character limit reached

Learning Deep Generative Models with Doubly Stochastic MCMC (1506.04557v4)

Published 15 Jun 2015 in cs.LG

Abstract: We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models (DGMs) in a collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a mini-batch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over hidden variables via a neural adaptive importance sampler, where the proposal distribution is parameterized by a deep neural network and learnt jointly. We demonstrate the effectiveness on learning various DGMs in a wide range of tasks, including density estimation, data generation and missing data imputation. Our method outperforms many state-of-the-art competitors.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.