Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Online Matrix Factorization via Broyden Updates (1506.04389v2)

Published 14 Jun 2015 in stat.ML

Abstract: In this paper, we propose an online algorithm to compute matrix factorizations. Proposed algorithm updates the dictionary matrix and associated coefficients using a single observation at each time. The algorithm performs low-rank updates to dictionary matrix. We derive the algorithm by defining a simple objective function to minimize whenever an observation is arrived. We extend the algorithm further for handling missing data. We also provide a mini-batch extension which enables to compute the matrix factorization on big datasets. We demonstrate the efficiency of our algorithm on a real dataset and give comparisons with well-known algorithms such as stochastic gradient matrix factorization and nonnegative matrix factorization (NMF).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.