Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

A Bayesian Model for Generative Transition-based Dependency Parsing (1506.04334v2)

Published 13 Jun 2015 in cs.CL

Abstract: We propose a simple, scalable, fully generative model for transition-based dependency parsing with high accuracy. The model, parameterized by Hierarchical Pitman-Yor Processes, overcomes the limitations of previous generative models by allowing fast and accurate inference. We propose an efficient decoding algorithm based on particle filtering that can adapt the beam size to the uncertainty in the model while jointly predicting POS tags and parse trees. The UAS of the parser is on par with that of a greedy discriminative baseline. As a LLM, it obtains better perplexity than a n-gram model by performing semi-supervised learning over a large unlabelled corpus. We show that the model is able to generate locally and syntactically coherent sentences, opening the door to further applications in language generation.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)