Papers
Topics
Authors
Recent
2000 character limit reached

Technical Report: Image Captioning with Semantically Similar Images (1506.03995v1)

Published 12 Jun 2015 in cs.CV

Abstract: This report presents our submission to the MS COCO Captioning Challenge 2015. The method uses Convolutional Neural Network activations as an embedding to find semantically similar images. From these images, the most typical caption is selected based on unigram frequencies. Although the method received low scores with automated evaluation metrics and in human assessed average correctness, it is competitive in the ratio of captions which pass the Turing test and which are assessed as better or equal to human captions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.