Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal Functions of Forbidden Multidimensional Matrices (1506.03874v1)

Published 11 Jun 2015 in math.CO and cs.DM

Abstract: Pattern avoidance is a central topic in graph theory and combinatorics. Pattern avoidance in matrices has applications in computer science and engineering, such as robot motion planning and VLSI circuit design. A $d$-dimensional zero-one matrix $A$ avoids another $d$-dimensional zero-one matrix $P$ if no submatrix of $A$ can be transformed to $P$ by changing some ones to zeros. A fundamental problem is to study the maximum number of nonzero entries in a $d$-dimensional $n \times \cdots \times n$ matrix that avoids $P$. This maximum number, denoted by $f(n,P,d)$, is called the extremal function. We advance the extremal theory of matrices in two directions. The methods that we use come from combinatorics, probability, and analysis. Firstly, we obtain non-trivial lower and upper bounds on $f(n,P,d)$ when $n$ is large for every $d$-dimensional block permutation matrix $P$. We establish the tight bound $\Theta(n{d-1})$ on $f(n,P,d)$ for every $d$-dimensional tuple permutation matrix $P$. This tight bound has the lowest possible order that an extremal function of a nontrivial matrix can ever achieve. Secondly, we show that $f(n,P,d)$ is super-homogeneous for a class of matrices $P$. We use this super-homogeneity to show that the limit inferior of the sequence ${ {f(n,P,d) \over n{d-1}}}$ has a lower bound $2{\Omega(k{1/ d})}$ for a family of $k \times \cdots \times k$ permutation matrices $P$. We also improve the upper bound on the limit superior from $2{O(k \log k)}$ to $2{O(k)}$ for all $k \times \cdots \times k$ permutation matrices and show that the new upper bound also holds for tuple permutation matrices.

Citations (25)

Summary

We haven't generated a summary for this paper yet.