Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Smart Sampling Kalman Filter with Symmetric Samples (1506.03254v1)

Published 10 Jun 2015 in cs.SY

Abstract: Nonlinear Kalman Filters are powerful and widely-used techniques when trying to estimate the hidden state of a stochastic nonlinear dynamic system. In this paper, we extend the Smart Sampling Kalman Filter (S2KF) with a new point symmetric Gaussian sampling scheme. This not only improves the S2KF's estimation quality, but also reduces the time needed to compute the required optimal Gaussian samples drastically. Moreover, we improve the numerical stability of the sample computation, which allows us to accurately approximate a thousand-dimensional Gaussian distribution using tens of thousands of optimally placed samples. We evaluate the new symmetric S2KF by computing higher-order moments of standard normal distributions and investigate the estimation quality of the S2KF when dealing with symmetric measurement equations. Finally, extended object tracking based on many measurements per time step is considered. This high-dimensional estimation problem shows the advantage of the S2KF being able to use an arbitrary number of samples independent of the state dimension, in contrast to other state-of-the-art sample-based Kalman Filters.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube