Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric Tensor Completion from Multilinear Entries and Learning Product Mixtures over the Hypercube (1506.03137v3)

Published 9 Jun 2015 in cs.DS, cs.LG, and stat.ML

Abstract: We give an algorithm for completing an order-$m$ symmetric low-rank tensor from its multilinear entries in time roughly proportional to the number of tensor entries. We apply our tensor completion algorithm to the problem of learning mixtures of product distributions over the hypercube, obtaining new algorithmic results. If the centers of the product distribution are linearly independent, then we recover distributions with as many as $\Omega(n)$ centers in polynomial time and sample complexity. In the general case, we recover distributions with as many as $\tilde\Omega(n)$ centers in quasi-polynomial time, answering an open problem of Feldman et al. (SIAM J. Comp.) for the special case of distributions with incoherent bias vectors. Our main algorithmic tool is the iterated application of a low-rank matrix completion algorithm for matrices with adversarially missing entries.

Citations (7)

Summary

We haven't generated a summary for this paper yet.