Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Symmetric Tensor Completion from Multilinear Entries and Learning Product Mixtures over the Hypercube (1506.03137v3)

Published 9 Jun 2015 in cs.DS, cs.LG, and stat.ML

Abstract: We give an algorithm for completing an order-$m$ symmetric low-rank tensor from its multilinear entries in time roughly proportional to the number of tensor entries. We apply our tensor completion algorithm to the problem of learning mixtures of product distributions over the hypercube, obtaining new algorithmic results. If the centers of the product distribution are linearly independent, then we recover distributions with as many as $\Omega(n)$ centers in polynomial time and sample complexity. In the general case, we recover distributions with as many as $\tilde\Omega(n)$ centers in quasi-polynomial time, answering an open problem of Feldman et al. (SIAM J. Comp.) for the special case of distributions with incoherent bias vectors. Our main algorithmic tool is the iterated application of a low-rank matrix completion algorithm for matrices with adversarially missing entries.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.