Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Modeling Order in Neural Word Embeddings at Scale (1506.02338v3)

Published 8 Jun 2015 in cs.CL

Abstract: NLP systems commonly leverage bag-of-words co-occurrence techniques to capture semantic and syntactic word relationships. The resulting word-level distributed representations often ignore morphological information, though character-level embeddings have proven valuable to NLP tasks. We propose a new neural LLM incorporating both word order and character order in its embedding. The model produces several vector spaces with meaningful substructure, as evidenced by its performance of 85.8% on a recent word-analogy task, exceeding best published syntactic word-analogy scores by a 58% error margin. Furthermore, the model includes several parallel training methods, most notably allowing a skip-gram network with 160 billion parameters to be trained overnight on 3 multi-core CPUs, 14x larger than the previous largest neural network.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 237 likes.

Upgrade to Pro to view all of the tweets about this paper: