Papers
Topics
Authors
Recent
2000 character limit reached

Riemannian preconditioning for tensor completion (1506.02159v2)

Published 6 Jun 2015 in cs.NA, cs.LG, and math.OC

Abstract: We propose a novel Riemannian preconditioning approach for the tensor completion problem with rank constraint. A Riemannian metric or inner product is proposed that exploits the least-squares structure of the cost function and takes into account the structured symmetry in Tucker decomposition. The specific metric allows to use the versatile framework of Riemannian optimization on quotient manifolds to develop a preconditioned nonlinear conjugate gradient algorithm for the problem. To this end, concrete matrix representations of various optimization-related ingredients are listed. Numerical comparisons suggest that our proposed algorithm robustly outperforms state-of-the-art algorithms across different problem instances encompassing various synthetic and real-world datasets.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.