Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

When-To-Post on Social Networks (1506.02089v1)

Published 5 Jun 2015 in cs.SI

Abstract: For many users on social networks, one of the goals when broadcasting content is to reach a large audience. The probability of receiving reactions to a message differs for each user and depends on various factors, such as location, daily and weekly behavior patterns and the visibility of the message. While previous work has focused on overall network dynamics and message flow cascades, the problem of recommending personalized posting times has remained an underexplored topic of research. In this study, we formulate a when-to-post problem, where the objective is to find the best times for a user to post on social networks in order to maximize the probability of audience responses. To understand the complexity of the problem, we examine user behavior in terms of post-to-reaction times, and compare cross-network and cross-city weekly reaction behavior for users in different cities, on both Twitter and Facebook. We perform this analysis on over a billion posted messages and observed reactions, and propose multiple approaches for generating personalized posting schedules. We empirically assess these schedules on a sampled user set of 0.5 million active users and more than 25 million messages observed over a 56 day period. We show that users see a reaction gain of up to 17% on Facebook and 4% on Twitter when the recommended posting times are used. We open the dataset used in this study, which includes timestamps for over 144 million posts and over 1.1 billion reactions. The personalized schedules derived here are used in a fully deployed production system to recommend posting times for millions of users every day.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.