Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Regularized Computation of Approximate Pseudoinverse of Large Matrices Using Low-Rank Tensor Train Decompositions (1506.01959v4)

Published 5 Jun 2015 in math.NA and cs.NA

Abstract: We propose a new method for low-rank approximation of Moore-Penrose pseudoinverses (MPPs) of large-scale matrices using tensor networks. The computed pseudoinverses can be useful for solving or preconditioning of large-scale overdetermined or underdetermined systems of linear equations. The computation is performed efficiently and stably based on the modified alternating least squares (MALS) scheme using low-rank tensor train (TT) decompositions and tensor network contractions. The formulated large-scale optimization problem is reduced to sequential smaller-scale problems for which any standard and stable algorithms can be applied. Regularization technique is incorporated in order to alleviate ill-posedness and obtain robust low-rank approximations. Numerical simulation results illustrate that the regularized pseudoinverses of a wide class of non-square or nonsymmetric matrices admit good approximate low-rank TT representations. Moreover, we demonstrated that the computational cost of the proposed method is only logarithmic in the matrix size given that the TT-ranks of a data matrix and its approximate pseudoinverse are bounded. It is illustrated that a strongly nonsymmetric convection-diffusion problem can be efficiently solved by using the preconditioners computed by the proposed method.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube