Papers
Topics
Authors
Recent
2000 character limit reached

Regularized Computation of Approximate Pseudoinverse of Large Matrices Using Low-Rank Tensor Train Decompositions (1506.01959v4)

Published 5 Jun 2015 in math.NA and cs.NA

Abstract: We propose a new method for low-rank approximation of Moore-Penrose pseudoinverses (MPPs) of large-scale matrices using tensor networks. The computed pseudoinverses can be useful for solving or preconditioning of large-scale overdetermined or underdetermined systems of linear equations. The computation is performed efficiently and stably based on the modified alternating least squares (MALS) scheme using low-rank tensor train (TT) decompositions and tensor network contractions. The formulated large-scale optimization problem is reduced to sequential smaller-scale problems for which any standard and stable algorithms can be applied. Regularization technique is incorporated in order to alleviate ill-posedness and obtain robust low-rank approximations. Numerical simulation results illustrate that the regularized pseudoinverses of a wide class of non-square or nonsymmetric matrices admit good approximate low-rank TT representations. Moreover, we demonstrated that the computational cost of the proposed method is only logarithmic in the matrix size given that the TT-ranks of a data matrix and its approximate pseudoinverse are bounded. It is illustrated that a strongly nonsymmetric convection-diffusion problem can be efficiently solved by using the preconditioners computed by the proposed method.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.