Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Avatar: A Time- and Space-Efficient Self-Stabilizing Overlay Network (1506.01688v1)

Published 4 Jun 2015 in cs.DC

Abstract: Overlay networks present an interesting challenge for fault-tolerant computing. Many overlay networks operate in dynamic environments (e.g. the Internet), where faults are frequent and widespread, and the number of processes in a system may be quite large. Recently, self-stabilizing overlay networks have been presented as a method for managing this complexity. \emph{Self-stabilizing overlay networks} promise that, starting from any weakly-connected configuration, a correct overlay network will eventually be built. To date, this guarantee has come at a cost: nodes may either have high degree during the algorithm's execution, or the algorithm may take a long time to reach a legal configuration. In this paper, we present the first self-stabilizing overlay network algorithm that does not incur this penalty. Specifically, we (i) present a new locally-checkable overlay network based upon a binary search tree, and (ii) provide a randomized algorithm for self-stabilization that terminates in an expected polylogarithmic number of rounds \emph{and} increases a node's degree by only a polylogarithmic factor in expectation.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)