Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Abstractive Multi-Document Summarization via Phrase Selection and Merging (1506.01597v2)

Published 4 Jun 2015 in cs.CL and cs.AI

Abstract: We propose an abstraction-based multi-document summarization framework that can construct new sentences by exploring more fine-grained syntactic units than sentences, namely, noun/verb phrases. Different from existing abstraction-based approaches, our method first constructs a pool of concepts and facts represented by phrases from the input documents. Then new sentences are generated by selecting and merging informative phrases to maximize the salience of phrases and meanwhile satisfy the sentence construction constraints. We employ integer linear optimization for conducting phrase selection and merging simultaneously in order to achieve the global optimal solution for a summary. Experimental results on the benchmark data set TAC 2011 show that our framework outperforms the state-of-the-art models under automated pyramid evaluation metric, and achieves reasonably well results on manual linguistic quality evaluation.

Citations (143)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.