Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Taylor Polynomial Estimator for Estimating Frequency Moments (1506.01442v1)

Published 4 Jun 2015 in cs.DS

Abstract: We present a randomized algorithm for estimating the $p$th moment $F_p$ of the frequency vector of a data stream in the general update (turnstile) model to within a multiplicative factor of $1 \pm \epsilon$, for $p > 2$, with high constant confidence. For $0 < \epsilon \le 1$, the algorithm uses space $O( n{1-2/p} \epsilon{-2} + n{1-2/p} \epsilon{-4/p} \log (n))$ words. This improves over the current bound of $O(n{1-2/p} \epsilon{-2-4/p} \log (n))$ words by Andoni et. al. in \cite{ako:arxiv10}. Our space upper bound matches the lower bound of Li and Woodruff \cite{liwood:random13} for $\epsilon = (\log (n)){-\Omega(1)}$ and the lower bound of Andoni et. al. \cite{anpw:icalp13} for $\epsilon = \Omega(1)$.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)