Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Hyperspectral Image Classification and Clutter Detection via Multiple Structural Embeddings and Dimension Reductions (1506.01115v1)

Published 3 Jun 2015 in cs.CV

Abstract: We present a new and effective approach for Hyperspectral Image (HSI) classification and clutter detection, overcoming a few long-standing challenges presented by HSI data characteristics. Residing in a high-dimensional spectral attribute space, HSI data samples are known to be strongly correlated in their spectral signatures, exhibit nonlinear structure due to several physical laws, and contain uncertainty and noise from multiple sources. In the presented approach, we generate an adaptive, structurally enriched representation environment, and employ the locally linear embedding (LLE) in it. There are two structure layers external to LLE. One is feature space embedding: the HSI data attributes are embedded into a discriminatory feature space where spatio-spectral coherence and distinctive structures are distilled and exploited to mitigate various difficulties encountered in the native hyperspectral attribute space. The other structure layer encloses the ranges of algorithmic parameters for LLE and feature embedding, and supports a multiplexing and integrating scheme for contending with multi-source uncertainty. Experiments on two commonly used HSI datasets with a small number of learning samples have rendered remarkably high-accuracy classification results, as well as distinctive maps of detected clutter regions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.