Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dependent Random Graphs and Multiparty Pointer Jumping (1506.01083v1)

Published 2 Jun 2015 in cs.CC

Abstract: We initiate a study of a relaxed version of the standard Erdos-Renyi random graph model, where each edge may depend on a few other edges. We call such graphs "dependent random graphs". Our main result in this direction is a thorough understanding of the clique number of dependent random graphs. We also obtain bounds for the chromatic number. Surprisingly, many of the standard properties of random graphs also hold in this relaxed setting. We show that with high probability, a dependent random graph will contain a clique of size $\frac{(1-o(1))\log n}{\log(1/p)}$, and the chromatic number will be at most $\frac{n \log(1/1-p)}{\log n}$. As an application and second main result, we give a new communication protocol for the k-player Multiparty Pointer Jumping (MPJ_k) problem in the number-on-the-forehead (NOF) model. Multiparty Pointer Jumping is one of the canonical NOF communication problems, yet even for three players, its communication complexity is not well understood. Our protocol for MPJ_3 costs $O(\frac{n\log\log n}{\log n})$ communication, improving on a bound of Brody and Chakrabarti [BC08]. We extend our protocol to the non-Boolean pointer jumping problem $\widehat{MPJ}_k$, achieving an upper bound which is o(n) for any $k >= 4$ players. This is the first o(n) bound for $\widehat{MPJ}_k$ and improves on a bound of Damm, Jukna, and Sgall [DJS98] which has stood for almost twenty years.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.